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Outline

L? TV Functional — L' TV Functional
Properties of L' TV : f = yqo = u = xx, for some X.
Properties of L' TV : For f = xq, [ |Vu|l+ A [ Ju— f| = Per(2) + A\|ZAQ

Properties of L' TV: Q = B% and non-uniqueness.

Properties of L' TV: Preservation of contrast: for any C? set () there is a \*
such that A > \* implies that > = ().

New Result 1: B% C ) — B% C X

New Results 2: B% C Q) — B%_e C X

New Result 3: A complete characterization of > for convex ).




Motivation

We are pursuing this research with the following objectives in mind:

e To understand precise nature of denoising/reconstruction we want to understand,
in great detail, how methods deform /preserve simple images.

e Allows us to compare denoising methods and understand implicit biases.

e Moves us towards a precise and systematic approach to prior informed
regularization for complex experimental images.




ROF Model and BV Functions

The classic Rudin-Osher-Fatemi (ROF) total variation regularized functional:

F(u) E/|Vu\da:—|—)\/|u—f\2dx (1)

is characterized by simultaneous edge recovery/preservation and noise reduction
but also loss of contrast.

(1) total variation of u = [ |Vul
(I w e BV(Q) ifue LY(Q) and [|Vu| < co.

() [ 19al = supf[ Va7 ¢ lg] < 1.5 € CHOR) @)

= sup{ [udivg ; |g] < 1,5 € CH(Q;R™)} (3)

for u e Whi,




ROF Model and BV Functions: cont.

(IV) For uw € L'(Q), we use the last equation to define [ |Vul

(V) The theory for BV (£2) is extensive and quite beautiful [see for example Giusti's
“Minimal Surfaces and Functions of Bounded Variation” and Evan’s and Gariepy's
“Measure Theory and Fine Properties of Functions”]

Other facts:

1. TV (u) is lower semi-continuous in L?
2. Approximation, compactness, and trace results are similar to Sobolev spaces.
3. Du = Vu is a vector valued Radon measure

4. [|Vu| = [ Per({z ; u(z) > t})dt ( coarea formula )




L' TV Functional: TV + L' Data Fidelity

The L' TV functional, previously studied by [Alliney], [Nikolova] and [Chan and
Esedoglu] is given by:

F(u) E/|Vu|d:1:—i—)\/|u—f|d:1: (4)

and is characterized by simultaneous edge recovery/preservation and noise reduction
without the loss of contrast. But this is not all:

1. F(u) is not strictly convex = we do not have uniqueness!
2. u is a minimizer for f — Cu is a minimizer for C'f

We now look at the properties of L' T'V a bit more closely.




L' TV: f = xq = u = xx. for some ¥

Result:[Chan and Esedoglu] If u is any minimizer of F\(u) then for almost all
p €10, 1],

X{z:u>p}
is also a minimizer of F\(u).

One Dimensional Example: A determines which interval of ) appears in ..

X0 Xy

Figure 1: Small segments disappear: A determines “small”

Segment preserved if {Per(I) =2 < AL; < L; > £}.




LYTV: f=vq — F(u) = F(X) = Per(X) + A\|ZAQ)

For characteristic functions u = yx(binary images) [ |Vu| is exactly the perimeter
and A J Ju— f] = X[ [xs — xal = A [ [£AQ]

J |Vxs| = Per(%) AMlu—fl=X[Ixs —xal =X [|12AQ




L'TV: Q = B> and non-uniqueness.

Result:[Chan and Esedoglu] If 2 = B% then u = axp, is a minimizer for any
by
a € [0,1].

One can therefore concoct 2's whose solutions > (\) have, as A — oo, an infinite
number of non-uniqueness points ...




L' TV: smooth Q + big X imply ¥ = Q.

The previous example demonstrated an €2 that is never reproduced by > as A\ — oc.
When Q is a bounded, C? set this can’t happen:

Result:[Chan and Esedoglu] For Q bounded and C? there is a A* < co such that
for all A > A\*, ¥ = Q.

Choose G such that [, 1divg = Per(£2):

S Vxq 7= fQ 1divg

Figure 2: choosing a vector field




L' TV: smooth Q + big X imply ¥ = Q.

Per(X) + A|XAQ| > /1div§’+ A/ 1+>\/ 1
QNXxe QN
— / 1divg —+ / 1div§+A/ 1+)\/ 1
QN QN QNXe Qcnx

2/ ldivg + 1div§+/ 1div§'+)\/ 1
QN QNnxe Qeny

= / 1d|vg—|—/ 1(A + divg)
QeNys
Per(€2

as long as A > |[|div{]| oo




New Result 1: B% C ) — B% C

Theorem 1. [/f B, C Q) where r > % then B, C X..

In particular, we can conclude that the boundary of X is in the envelope of inside
and outside % balls.




New Result 1: B% C ) — B% C

Per(B, X9

Per(B,I X9 r

E(XUB,) - E(X) = (Per(B,) — \B,|) + (\B,NX|— Per(B,.NX))(10)
= (27Tr — %772) + (%sz — 27r,0*) (11)
B r p P
= 27r(l — E) + 27T,0(§ — ?) (12)




New Result 2: B% CQ)— B CX

X—E

3=1B,NQ°NEC]
Per(B,I 39 / BAQI = IB,NOC =3 + 4

Per(B,/ X9

*

P _LytarB\Q  (13)

E(SUB,) - E(Z) < 2rr(1 - %) +omp(gy =

Theorem 2. Given a ball B; with % <7< % and an e such that (1—
we can choose a 6 > 0 such that if |B,.\)| < 0|B;|, then B, C X forr* =

%) > e >0,
2




ldea of proof: A Gronwall inequality and Comparisons

E(XUB,) — B(%) —Per(X; B,(x0)) + Per(B,; X°) + A|[B, \ 3| (14)

—Cyou(r)+o(r)+ X(r) (v(r)=|B-\%|) (15)
0 < —Cy/v(r)+o(r) + Av(r i\/v(r)g%(e_%—l>—|—\/|BR\z|

= small enough \BR\E\ = v(R—¢)=0= Br_.CX.

VANVAN

|Bgr \ Q| small = |Br \ | small




ldea of proof:

The rest of the proof is a fairly intricate argument showing that when:
|Br\ 2] <6

then of the three cases:

1 |[Br\X| < N§

2 N6 < |Br\X| < inR?

3 imR*<|Bgr\ X

only case 1 occurs. This is obtained by making use of:

*

E(XUB,) — E(X) < 2mr(1 — %) + QWp(% - %) LoMNB Q| (16)




New Result 3: Exact X for any convex ()

Theorem 3. Using a recent result of Allard’s, we can conclude that for convex

(), Y2 = the union of all % balls which are contained in €2 PROVIDED there is at

2

least one 5 ball contained in €).

QOutline of Proof:

If Q2 is convex and X (which must be contained in §2) is not empty, then X is the

union of the % balls in €2. Our result says that if {2 contains a % ball, then it is

contained in a solution . Therefore, using Allard’s result, > must equal the union
of% balls in €.




Comments and Conclusions

e To Do: Establish connections to morphology — opening and closing, etc.
e To Do: Exact solutions with noise — further results.

e To Do: Understand the regularization and reconstruction aspects image analysis
for experimental data in which physics is partly understood and partly being
explored.




